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Many techniques have been developed to measure the difficulty of forecasting data from an observed time
series. This paper introduces a measure which we call the “forecast entropy” designed to measure the predict-
ability of a time series. We use attractors reconstructed from the time series and the distributions in the regular
and tangent spaces of the data which comprise the attractor. We then consider these distributions on different
scales. We present a formula for calculating the forecast entropy. To provide a standard of predictability, we
define an idealized random system whose forecast entropy will be maximal; we then use this measure to rescale
the forecast entropy to lie in the range[0,1]. The time series obtained from several chaotic systems as well as
from a pseudorandom system are studied using this measure. We present evidence that the forecast entropy can
be used as a tool for determining optimal delays and embedding dimensions used for reconstructing better
attractors. We also show that the forecast entropy of a random system has completely different characteristics
from that of a deterministic one.
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I. INTRODUCTION

In the study of a complicated physical system, data analy-
sis of the time series of some physical quantities of the sys-
tem is necessary in order to obtain the most important prop-
erties of the system. One of the fundamental problems in the
study is how to measure the complexity of both local and
global dynamical behaviors from the observed time series.
There are two main approaches to quantifying the complex-
ity of a distribution[1]. One approach has roots in dynamical
systems theory and includes Lyapunov exponents and
Kolmogorov-Sinai entropy[2]. The other stems from infor-
mation theory and includes Shannon entropy[3] and algo-
rithmic complexity[4]. For a review of the complexity mea-
sures, see the work of Shineret al. [5]. For chaotic systems,
various approaches to complexity measurements may be mu-
tually complementary or may be contradictory. For example,
the largest Lyapunov exponentsld of a chaotic attractor mea-
sures how fast two neighboring orbits diverge from one an-
other. Thus,l describes how fast information about an orbit
is lost. It seems reasonable to conclude that the larger thel,
the more complex the system. On the other hand, the auto-
correlation function of a time series gives the correlation
between points. A shorter autocorrelation means that less in-
formation of the next point can be obtained from the current
point. Therefore, it seems reasonable to say that the shorter
the autocorrelation, the more complex the system. However,
for the well-known chaotic Lorenz and Rössler systems, the
largest Lyapunov exponent of the Lorenz system can be
much larger than that of the Rössler system, but the autocor-

relation of the Lorenz system is much longer than that of the
Rössler system. So the Lyapunov exponent and the autocor-
relation function approaches seem to contradict one another
in this context.

A fractal-dimension-like correlation dimension[6] sdcd
may also indicate something about system complexity be-
cause it represents the density of the system’s orbits in phase
space. For a system in a stable equilibrium,dc=0, in a stable
periodic state,dc=1, and in a chaotic state,dc.2. It seems
that the larger thedc , the more complex the system. How-
ever, to determine which of the two systems withdc=2.1
and 2.3, respectively, is more complex requires more infor-
mation about the systems. However, the more information
one has, the harder it may be to make a judgment. This
suggests thatthe complexity problem is itself complex.

In this paper, we propose an alternative approach to mea-
suring the predictability of the time series by considering the
distribution of an observed time series in both the regular
and tangent spaces. We introduce the idea offorecast entropy
sFd to measure the predictability.

We introduce what we will call an “ideal random system”
to act as the unpredictability standard. The maximum value
of F is normalized to 1. At this maximum value, the system
is totally unpredictable, having the maximum number of pos-
sible states not only in regular space but also in tangent
spaces of any order. For any completely predictable system,
such as periodic systems,F=0. For a real system or an at-
tractorF lies in the intervalf0,1g.

In Sec. II, our predictability problem will be framed. A
commonly used procedure for measuring complexity will be
analyzed to show its disadvantage in solving this predictabil-
ity problem. To describe our procedure, an ideal random sys-
tem will be introduced in Sec. III. A mathematical expression
for F will be given in Sec. IV. Some simple cases of the
predictability problem are enumerated in Sec. V to illustrate
our approach. In Sec. VI we turn to some real chaotic sys-
tems. Our approach not only gives reasonableF’s but also
reveals important information about the system generating
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the time series, such as the dynamical dimension of the sys-
tem. A pseudorandom system and the noised Lorenz system
will be investigated in Sec. VII. Finally, discussion and con-
clusions are given in Sec. VIII.

II. PREDICTABILITY PROBLEM

Our predictability problem is the following: Given a se-
ries of data, how difficult it is to predict the next point?
Different techniques may be used for predictions. Frequently
used techniques include neural networks[7], wavelets[8],
return maps[9], and nonlinear dynamical forecasting[10].
The performance of these techniques may differ depending
upon the given data. The task of studying the predictability
problem is to show the general difficulty of predictions.

The predictability problem is often investigated by mea-
suring the spatial complexity of the data. One begins by cal-
culating the probability of finding a point in a specific neigh-
borhood. Denoting bypi the probability of finding the point
in neighborhoodi, one may define asurprisefunction

surprise= − ln pi , s1d

which tells how much information is obtained by receiving
pi. The Boltzmann-Gibbs-Shannon entropy, here denoted by
C, is just the expected value of thissurpriseover all states

C = − o
i=1

n

pi ln pi . s2d

The problem with this technique is that it does not consider
the spatial location ofpi at all. For instance, suppose that in
four sequential positions 1, 2, 3, and 4, there are two prob-
ability distributions, given below:

space position: 1 2 3 4,
distribution I: {0.4, 0.4, 0.1, 0.1},
distribution II: {0.4, 0.1, 0.4, 0.1}.
Application of Eq.(2) to the two distributions yields the

same answer, despite the very different spatial structure of
the two probabilities, which could result in a large discrep-
ancy in forecasting to which nearby position(1, 2, 3, or 4)
we will step next. For distribution(I), one certainly will
judge that the next data may be locatedbetweenpositions 1
and 2, while for distribution(II ), one may say that the data
may be located near position 1 or near position 3. Further,
the resulting errors from the judgments may be different.
Statistically, the error in the former distribution is less than
that in the latter. Therefore, the complexity of these two dis-
tributions should be different.

In the above, we have proposed our predictability prob-
lem and analyzed an often-used complexity measure tech-
nique. This technique could not be safely used in the predict-
ability problem because it does not consider the spatial
structure of the probabilities. Our procedure is designed to
overcome this. Before describing our procedure, we first in-
troduce an ideal random system which plays an essential role
in our procedure.

III. IDEAL RANDOM SYSTEM

Suppose there is a one-dimensional infinite time series
hxstidj generated by a system, whereti = i Dt, i =1,2, . . . and
Dt is a constant. Denote thej th difference ofhxstidj by

hxs jdstidj = fxs j−1dsti+1d − xs j−1dstidg/Dt.

Here,hxs0dstidj=hxstidj. The system is called anideal random
systemif and only if for all j =0,1, . . ., theserieshxs jdstidj is
uniformly distributed in the regimehfas jd ,bs jdgj. In other
words,xs jdstid can be any value inhfas jd ,bs jdgj in equal prob-
ability. Here,as jd andbs jd are the smallest and largest values
of hxs jdstidj.

For a finite series with equal time intervals, one may only
consider the distributions up to some maximum order of fi-
nite differences. In this paper, we limit ourselves to consid-
ering the distribution of zeroth- and first-degree differences.
The zeroth-degree difference corresponds to the usual space
Rd, whered is the embedding dimension used in reconstruct-
ing the attractor from the time serieshxstidj. The first-degree
difference corresponds to the tangent space ofRd.

We will use this as the standard of unpredictability and to
normalizeF of real observed time series. Of course, such an
ideal random system cannot exist—it is impossible forhxstidj
to be iid (independent and identically distributed) and uni-
form and for the differences to also be iid and uniform. But
no other system will have as big a forecast entropy as this
hypothetical system, so it obtains a normalization constant.

In the following, we only consider the zeroth-degree situ-
ation, since aj th-degree case can follow the same procedure
based on the distribution ofhxs jdstidj.

IV. CALCULATION OF FORECAST ENTROPY

As we discussed in Sec. II, a more meticulous version of
the predictability problem should consider the spatial organi-
zation of the probabilities. The method based on Eq.(2) does
not do this. One way of incorporating spatial information is
to separate the group into subgroups or observe the distribu-
tion in different scales. For example, for distribution(I), if
we decompose the distribution into two subgroupshp1,p2j
andhp3,p4j, the difference of the probabilities between these
two subgroups appears, indicating spatial information. A
more rigorous analysis of this basic idea leads to our ap-
proach described below.

A. F in the one-dimensional case„d=1…

Suppose there is a segment of the one-dimensional time
serieshxstidj, i =1,2, . . . ,n. A probability distribution can be
obtained based on the values of these data points. For sim-
plicity and without loss of generality, supposen=2m (see
more discussion later), wherem is a positive integer. If the
time series is generated by the ideal random system, the dis-
tribution is uniform in xP fa,bg, where a and b are the
smallest and largest values ofhxstidj. Equally partition the
interval fa,bg into n subintervals so that for the time series
from the ideal random system we expect a single point in
each of the subintervals as shown in Fig. 1. If the time series
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is not from the ideal random system, the distribution will not
be uniform. Thus, we may expect many points in one sub-
interval and none in other subintervals. We describe the pro-
cedure as follows.

Step 1. Cut the line at the center offa,bg, and count the
number of points on the left and right half lines, respectively;
then, denote the numbers bynL and nR, respectively. The
location (left or right half of the line) of the next point may
be predicted based on the fractionspL=nL / snL+nRd and
pR=nR/ snL+nRd, respectively, which we interpret as prob-
abilities stemming from some process. At this scale, the dif-
ficulty of prediction may be measured by the Boltzmann-
Gibbs-Shannon entropy

S1 = − pL ln pL − pR ln pR. s3d

Here, the subscript 1 ofS indicates the first level. For the
ideal random system,nL=nR=n/2. Therefore,pL=pR=1/2
and thenS1= ln 2.

Step 2. Again cut the left and right half lines at their
centers, and count the number of points on the new intervals,
as shown in Fig. 1. Denote the resulting numbers bynLL, nLR,
nRL, andnRR.

To predict whether the next point will be located in the
regime LL or LR, one may use the fractions, interpreting
them as conditional probabilities,pLL=nLL / snLL+nLRd and
pLR=nLR/ snLL+nLRd. The difficulty of the prediction can
again be measured by

SL = − pLL ln pLL − pLR ln pLR. s4d

Similarly, in the regime includingRL andRR, the probabili-
ties are pRL=nRL/ snRL+nRRd and pRR=nRR/ snRL+nRRd, re-
spectively. The Boltzmann-Gibbs-Shannon entropy in this
regime is

SR = − pRL ln pRL − pRR ln pRR. s5d

For the ideal random system,pLL=pLR=pRL=pRR=1/2 and
SL=SR=ln 2. We now add to getS2, the total Boltzmann-
Gibbs-Shannon entropy of level 2.S2=SL+SR=2 ln 2.

Step 3. Repeat the process on the shorter and shorter in-
tervals to themth level. For the ideal random system, we
expect only one datum in each of the subgroups. Obviously,
at thekth level, the totalSk=2k−1 ln 2skømd.

DefineF as

F = o
k=1

m

ak Sk, s6d

whereak,k=1, . . . ,m, are parameters dependent only on the
number of points,n. Therefore,F is the summation of
weightedS’s up to themth level. For the ideal random sys-
tem,F=Fideal, given by

Fideal = ln 2o
k=1

m

ak2
k−1. s7d

To determine the parametersak’s, we consider two distri-
butions with the same number of points,n=2msmù2d. One
is generated by the ideal random system, with theF of that
distribution calculated by Eq.(7). Suppose another system
with the same number of points,n, has the pattern
h2,0,2,0, . . . ,2 ,0jwhere the digit(0 or 2) means the number
of points in the position. This distribution is special because
the difference between the ideal distribution and this case
appears only at the last step in the decision tree, and it
doubles the probabilities of the ideal case. We use a factor of
2 because we are working with powers of 2. The expression
for the F of this distribution,F8, is the same as Eq.(7),
except thatSm=0:

F8 = ln 2o
k=1

m−1

ak2
k−1. s8d

F8 shows a special property, in which one term is lost com-
pared with Eq.(7). As indicated, to arrive at a specific point
in the first distribution, the fraction ispideal=1/n, while in
the second distribution,p8=2/n. The difficulty of the predic-
tion for the first distribution is 2 times that of the second one.
One should expect this to be reflected in thatFideal of the first
distribution is also double the second one:

Fideal = 2F8. s9d

From Eqs.(7)–(9),

am =
1

2m−1 o
k=1

m−1

ak2
k−1. s10d

Thus we have obtained the relation ofam to
a1,a2, . . . ,am−1. Similarly, we can find the relation ofai to
a1,a2, . . . ,ai−1, where i øm, by considering two distribu-
tions with the same number of points,n=2m, mù2. One is
the same as that of the ideal random system at theith level—
namely, h2m−i ,2m−i , . . . ,2m−ij. The other is
h2m−i+1,0 ,2m−i+1,0 , . . . ,2m−i+1,0j. For the former distribu-
tion, F=F1:

F1 = ln 2o
k=1

i

ak2
k−1. s11d

For the latter distribution,F=F2:

FIG. 1. Distribution of a one-dimensional ideal random
system.
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F2 = ln 2o
k=1

i−1

ak2
k−1. s12d

BecauseF1=2F2, from Eqs.(11) and (12), one has

ai =
1

2i−1o
k=1

i−1

ak2
k−1. s13d

When i =2, it follows from Eq.(13) that

a2 = a1/2. s14d

When i =3, using Eqs.(13) and (14), one obtainsa3=a1/2.
Repeating the process to deduce all the parameters, finally
one has

ak = a1/2, k = 2, . . . ,m. s15d

One may use other distributions with the same number of
points to obtain the relation of the parameters. For example,
one distribution is h2m−i ,2m−i , . . . ,2m−ij and the other is
h2m−i+2,0 ,0,0,2m−i+1,0 ,0,0, . . . ,2m−i+1,0 ,0,0j. In this case,
for the latter distribution,F=F3:

F3 = ln 2o
k=1

i−2

ak2
k−1 s16d

and

F1 = 4F3. s17d

We then lose two terms in the expansion(16) with respect to
Eq. (11). Finally, we will have two free parameters.(In prac-
tice, only one is free because the other will be determined by
normalization.) The uniqueness of the solution requires the
a’s to be independent of the distribution chosen. The values
of the parameters are chosen to satisfy Eq.(15).

For the ideal random system, substituting the parameters
in Eq. (15) into Eq. (7) yields

Fideal = a1ln 2S1 +
1

2o
k=2

m

2kD = a12
mln 2. s18d

If we defineFideal=1 for the ideal random system, we then
obtain

a1 =
1

2mln 2
. s19d

For any distribution with the number of points,n=2mù4,
from Eq. (6), we have

F =
1

2m+1ln 2
S2S1 + o

k=2

m

SkD . s20d

FP f0,1g because a distribution under consideration is al-
ways in comparison with the distribution of the ideal random
system which hasthe same number of points. The magnitude
of F is thus normalized in terms of something that is un-
bounded. Hence, this does not mean that absolute entropy is
bounded.

If n=3m, we may cut the line(interval) into three equal
intervals each time. Suppose the probabilities of finding a
point in the three intervals arep1, p2, and p3. Then S=
−ok=1

3 pk ln pk. For the ideal random system,pk=1/3, andS
=ln 3. Similarly, up to themth level, using a similar process
to the casen=2m, we obtain

F = o
k=1

m

ak Sk = a1SS1 +
2

3o
k=2

m

SkD . s21d

For the ideal random system,

Fideal = a13
m−1 ln 3. s22d

Taking a1=s3m−1ln 3d−1 results inFideal=1 for the ideal ran-
dom system. Substitutinga1 into Eq. (21) gives the formula
for calculatingF for any distribution.

The above procedure can be generalized to the casen
= lm, where l is the smallest positive integer that satisfiesl
=nm−1

for any possible positive integerm. For example, if
n=16=24=42, l should be taken as 2, not 4. In this general
case, for the ideal random system,

Fideal = a1 lm−1 ln l . s23d

Takinga1=1/slm−1 ln ld yieldsFideal=1 for the ideal random
system. For any distribution withn= lm, we have

F = o
k=1

m

ak Sk =
1

lm−1ln l
SS1 +

l − 1

l
o
k=2

m

SkD . s24d

Obviously, whenm=1, F reduces toC in Eq. (2) except a
coefficientsln nd−1, not a good measure as we have stated in
Sec. II. Therefore, whenn is such thatm must be 1 if one
follows the formulan= lm, one should usen8= l8m8 instead,
wheren8.n andm8.1. Then thesen points are distributed
on the line by a scalen8 /n. Finally, F can be calculated
according to the distribution.

B. F in the multiple-dimensional case„dÐ2…

For simplicity, we may first calculateF of the ideal ran-
dom system along each coordinate(see more discussion
later), then define the system’sF to be the average of these
forecast entropies. For example, for the ideal random system,
the distribution is uniform along each coordinate, and then
the forecast entropy is 1 on the distribution, which results in
the average of the forecast entropies being 1.

C. F of a system up to thejth difference

DenoteFi as the forecast entropy of the system at theith
difference, wherei P f0, jg; then, theF of the system up to
the j th difference is defined as

F =
1

j + 1o
i=0

j

Fi . s25d

For the ideal random system,F=1 becauseFi =1 for all i.
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V. SOME BASIC CASES

In some forecasting techniques such as Short’s “nonlinear
dynamical forecasting”[10], the prediction is based on the
local manifold centered at the predicting point in regular
space. The manifold can be determined by the first-degree
differences of the points. The difficulty of predicting the
value of the next point depends on the distribution of the
points in the first-degree difference space—i.e., the tangent
space. In the cracking technique proposed by Pérez and Cer-
deira[9], however, the difficulty relies on the distribution of
points in regular space only. The first-degree differences of
the points are zero.

Next, we investigateF for some basic cases. For simplic-
ity we consider a local region where there are only four
points on a plane. As discussed above, to obtainF of the
distribution on a plane, one might first project the distribu-
tion onto two rectangular coordinates to get two distributions
on the two lines, respectively, then calculateF’s of the dis-
tributions separately, and finally averageF’s as the expected
F of the planar distribution.

If one considers instead the distribution in tangent space,
one may use the distribution of theanglesspanned between
the tangent directions of the points in regular space in terms
of some reference direction(such as thex axis), instead of
the tangents themselves. The angles are then mapped onto an
interval scaled between 0° and 360°. The scale is determined
by the number of points. If there aren points, the line is
scaled ton equal intervals(so that for the ideal random case,
there is one point in each interval on average). After that, one
has to adjust the direction of the coordinates on the plane so
that most angles are distributed between 0° and 180°. After
the adjustment, the coordinate on a plane is unique. One
need not consider the angular distribution of other coordi-
nates.

Case 1. Suppose the four points move with the same ve-
locity and in the same direction as depicted in Fig. 2(a).
Obviously, if one predictsxi+1 from xi based on this mani-
fold, xi+1 can be obtained without error, as the dashed line in
Fig. 2(a) shows.F is calculated based on the distribution of
the angles spanned between these directions(actually, only
one direction in this case) and thex coordinate, as shown in
Fig. 2(b). All the angles have the same value. We then have
F=a1s−1 ln 1−0 ln 0d=0, where a1 is a constant deter-
mined by calculatingF of an ideal random system with the
same number of points. We have taken 0 ln 0=0
3 slimx→0x ln x=0d in calculatingF in this case.

The average distribution of four points from an ideal ran-
dom system is shown in Fig. 3(a). The arrows indicate the
directions in which the points move. The distribution of the
angles mapped onto a line is shown in Fig. 3(b). From Eq.

(7), the forecast entropy of the ideal random system of the
distribution is

Fideal = 4a1 ln 2. s26d

Letting Fideal=1, one has

a1 =
1

4 ln 2
. s27d

From this case, we may answer the question: Why do we
need to consider the distribution in tangent space? Not only
can a random distribution in range of regular space be quite
uncomplicated in the tangent space, it is the tangent direc-
tions that hamper forecasting events most when one has a
cloud of data, but no idea which one to go to next. One can
use such prediction techniques as nonlinear dynamical fore-
casting to forecast the next data without difficulty. Therefore,
a careful measure of the predictability needs to consider this
dynamical aspect of signal data.

Case 2. Suppose the four points are not uniformly distrib-
uted [Fig. 4(a)]. The angular distribution is shown in Fig.
4(b). Based on the distribution, we have

F = − a1F2S1

4
ln

1

4
+

3

4
ln

3

4
D +

1

3
ln

1

3
+

2

3
ln

2

3
G = 0.6352,

s28d

where Eq.(27) has been used.
Case 3. Consider the distribution of one point in case 2. If

it were changed slightly[see Fig. 4(a)] according to the
dashed line, theF of the distribution would still be 0.6352.
But it makes sense thatF in this case ought to be different
from that in case 2. Clearly, to treat this we need to deter-
mine F using higher-degree difference spaces, in order to
obtain sufficient differences in the distributions.

We have studied three kinds of distributions. Any other
distributions can be studied similarly. In a real chaotic attrac-
tor, the case often encountered is that the number of points
changes in different local regions. One may have to partition
the space in different ways. In some prediction techniques
the points are used to construct a map. The number of points

FIG. 2. Distribution of four balls on a plane in case 1. FIG. 3. Distribution of four uniformly distributed balls on a
plane.

FIG. 4. Distribution of four balls on a plane in case 2.
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is determined by the number of unknown parameters in the
map. If the number of parameters is 25, at least 25 neighbor-
ing points are needed. In this case, we may search the neigh-
boring points centered on the reference point in regular space
to obtain 25 such points.(Of course, one may also choosel
=5 andm=2 for the 25-point case.)

VI. F OF SOME CHAOTIC SYSTEMS

Consider a time seriessstd coming from a chaotic system.
When the forecast entropyF is based on the attractor recon-
structed fromsstd, three factors may affect the measure.

The first factor is the value of the delayt. An improper
value of t will cause the reconstructed attractor to be more
tangled than it needs to be.

Second, the dimension will affect the local structure and
therefore affect the set of the neighbors, whileF is calculated
by averaging the localF’s in local regions. For example,
when the attractor is reconstructed to be two dimensional,
the coordinate of theith point on the plane is(sstid ,ssti
+td). Whether thej th point is a neighbor of theith point in
regular space is determined by the distance—e.g.,
Îfsstid−sstjdg2+fssti +td−sstj +tdg2. If one chooses three di-
mensions, the coordinate of theith point is ssstid ,ssti
+tdssti +2tdd, and the distance between pointsi and j is
changed.

Third, the size of the neighborhood or the number of
neighbors has an effect. Obviously, if the sizee→0 or there
is no neighbor of the reference point, thenF=0. On the other
hand, ife→` or all the points in the attractor are neighbors
of the predicting point, thenF may be quite close to 1 be-
cause there may be a large number of tangent directions.

Clearly, to compareF’s of different time series—i.e., of
different chaotic attractors—the number of points in each
series must be the same. Further, one needs to consider the
number of orbits consisting ofN points. Every system has its
own natural time scale. When integrating with a single step
size some systems oscillate very quickly, while others oscil-
late slowly. Thus, use of the same sampling rate to obtain the
time series across different systems may cause problems in
calculatingF. For example, for twoN=1024 time series, the
Lorenz system oscillates quickly and represents 20 orbits,
while the Rössler system oscillates slowly and represents just
3 orbits. The information provided by the first series may be
enough to describe the dynamical behavior of the system, but
that provided by the second one may be insufficient. There-
fore, one has to use different sampling rates for different
systems so that the number of orbits consisting ofN points is
roughly the same. Of the systems considered in this paper,
the Lorenz system oscillates the fastest. We use a sampling
rate of 0.01 time unit for the Lorenz system and larger rates
of the other systems. For all time series in this paper,N
=214.

To calculateF of a multiple-dimensional attractor, we first
project the attractor to each plane, then calculateF of the
distributions on these planes and use the average as the at-
tractor’s F. For example, for ad-dimensional attractor with
coordinates sx1,x2, . . . ,xdd, where xi =xft+si −1dtg, i
=1,2, . . . ,d, we may consider as many asCd

2 planes. In prac-

tice, it is enough to consider a smaller number of planes to
obtain F. When d!NDt /t, whereDt is the sampling rate,
the phase diagram projected from the reconstructed attractor
on thesxi ,xi+1d plane is the same as that on thesx1,x2d plane,
wherei =2,3, . . .,d−1. Including the plane itself, there are in
total d−1 similar diagrams as on thesx1,x2d plane. Similarly,
there ared− i diagrams similar tosx1,xi+1d plane including
the plane itself, wherei =1,2, . . .,d−1. Denoting byFi the
forecast entropy of the distribution on thesx1,xi+1d plane, we
obtain the forecast entropy of thed-dimensional attractor by
averaging the entropies of the distributions on each plane:

Fd =
2

dsd − 1doi=1

d−1

sd − idFi . s29d

To calculateFi, we first findn nearest neighbors of point
j in regular space, then calculate forecast entropy of the local
distribution of these neighbors in tangent space—that is, ac-
cording to their angles as discussed in Sec. V. Let pointj
experience each point of the time series. The average of
these localF’s is taken asFi of the distribution in the plane.

To choosen, the number of neighbors, we consider two
cases. First, we choosen=2d+2 whered is the dimension. We
want to investigate for which value ofd F reaches its lower
bound so that one can use ad-dimensional reconstructed
attractor for optimal prediction. Second,n=16. We investi-
gate the complexity of local structures of the attractor.

A. Chaotic Lorenz system

The chaotic Lorenz system considered here was first in-
troduced in[11] and is

ẋ = 10sy − xd,

ẏ = 25 x − y − x z,

ż= x y− 2.667z. s30d

To obtain an observed time seriessstd=xstd from the sys-
tem, we first use the fourth-order Runge-Kutta method to
integrate it. The step size is 0.01. To reconstruct an attractor
from the time series, one needs a delayt, which may be
determined by calculating the autocorrelation function
[12,13], mutual information[14,15], and mutual redundancy
[16].

However, for the Lorenz system, these techniques do not
give a satisfactoryt. Instead, one often finds thatt=0.1 is
best to reconstruct the attractor, because for this value the
attractor looks spread out like the original, projected on the
sx,yd plane. The time seriessstd is shown in Fig. 5(a). The
reconstructed attractor whent=0.1 is depicted in Fig. 5(b).

Is this t also best from the viewpoint of predictability?
This question may be answered by calculatingF, which is
calculated based on the distribution in the tangent space of
the series.

Case 1. The number of neighborsn=2d+2. In this case, we
focus on the predictability based on the reconstructed attrac-
tors with different embedding dimensions. Figure 6(a) dis-
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plays F as a function oft when d=2,3,4, and 5,respec-
tively. Denote Fd as F when the dimension isd. The
following information may be obtained from the figure[17].

(i) F2 oscillates aroundF3, and F3,F4,F5. This indi-
cates that a three-dimensional embedding space is enough to
reconstruct the attractor for prediction purposes. Surpris-
ingly, when t,0.3, F2,F3. Therefore, it may be better to
do a prediction in a two-dimensional attractor if one uses the
information of the neighbors in the tangent space. In prac-
tice, however, one may add some conditions on the choice of
neighbors to predict better[10]. In that case, it may be better
to use a three-dimensional attractor. As we will see in case 2,
the local structure of the three-dimensional Lorenz attractor
is simpler than that of the two-dimensional one.

(ii ) The minimum of F2 is 0.0082 att=0.18, and the

minimum of F3 is 0.022 att=0.1. Therefore, in order to
obtain the best forecasting result, one should adjust the value
of the delay asd changes.

Case 2. The number of neighbors is fixed at 16. We want
to investigate the characteristics of the local structures of
reconstructed attractors with the same number of neighbors.
In this case, as shown in Fig. 6(b), we may obtain the fol-
lowing conclusions.

(i) Except aroundt=0.2, F3,F2, which indicates that
the local structure of the three-dimensional attractor is sim-
pler than that of the two-dimensional one.

(ii ) The minimum ofF=0.0062 appears atd=3 and t
=0.1. This indicates that the delayt=0.1 is the best candi-
date to reconstruct the attractor when one uses delayed coor-
dinates. Thus, for the time series from the chaotic Lorenz
system,F in tangent space has solved the problem of the
value of delay, while the autocorrelation function in regular
space cannot.

(iii ) Fd does not decrease further asd increases after
d.2.

It may indicate that one cannot simplify the local struc-
tures by increasing the dimension of an attractor afterd.2.
In other words, it is enough to use three dimensions to de-
scribe the system. The number of dimensions is exactly equal
to the dynamical dimension of the Lorenz system. This result
is reasonable: A nonlinear coupled system cannot be decou-
pled. The observed time series of any variable contains the
information of the others and the whole system.

Therefore, by calculatingF of the distribution of an ob-
served time series in tangent space, we have obtained(a) the
dynamical dimension of the system that produces the time
series,(b) the value oft to best reconstruct an attractor, and
(c) the embedding dimension for optimal predictions.

The main purpose of statistics is to capture useful infor-
mation from an observed time series[18]. When delayed
coordinates are employed to reconstruct an attractor, the
value of the delay and the embedding dimension must be
determined so that the reconstructed attractor shares some
properties with the original one, such as no correlation be-
tween its coordinates, no crossing of its orbits, and simplicity
of its local structure. Kennel, Brown, and Abarbanel[19]
determinedd by studying the “noise” behavior of the neigh-
bors about a reference point. They studied an observed finite
time series from the Lorenz system and found that, in a prop-

FIG. 5. (a) A piece of time seriesxstd from the Lorenz system.(b) The reconstructed attractor from the series when delayt=0.1.

FIG. 6. F vs t of the Lorenz system(31) whend=2,3,4, and 5,
respectively.(a) n=2d+2, (b) n=16.
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erly reconstructed attractor, the “noise” is minimum. Their
work suggested thatd=4 for the series. Cenys and Pyragas
[20], however, suggested thatd=1+finteger part ofsdAdg
wheredA is the fractal dimension of the attractor. They used
a similar technique to that of Kennelet al. [19], but consid-
ered the behavior of the neighborhood, not neighbors. For an
observed time series from the Lorenz system or some other
three-dimensional chaotic system, the result of Cenys and
Pyragas[20] is perfect becausedAP s2,3d for these systems,
and we haved=3. But for some higher-dimensional systems,
the fractal dimension of their chaotic attractors may be still
low—for example,dAP s2,3d. In this case, the result of
Cenys and Pyragas[20] is unsuitable. There are many other
arguments in the literature for determining these values
[21,22]. Our work suggests that when more information can
be used from the time series—i.e., the distribution of the
series in tangent space and properly measure this
distribution—these values may be well determined.

In the remaining part of this section, we use three other
chaotic systems whose dynamical dimensions are 3 or 4 to
show that the advantages ofF hold not only in the Lorenz
system, but in other chaotic systems as well.

B. Chaotic Rössler system

The chaotic Rössler system, introduced in[23], is

ẋ = − y − z,

ẏ = x + 0.2 y,

ż= 0.2 +z sx − 5.7d. s31d

The time seriessstd=ystd and the reconstructed attractor are
depicted in Fig. 7.

To calculateF, the series is sampled usingDt=0.06 so
that there are approximately the same number of orbits in the
seriessN=214d as that for the Lorenz system case. The result
is shown in Fig. 8.

C. Four-dimensional chaotic system

A very entangled chaotic system described in[24] is

ẋ = y + z,

ẏ = b1 y − x w+ g w,

ż= s1 − adx − s1 + b2dz+ xy2,

ẇ = y + z− b2 w. s32d

When a=38.2,b1=b2=0.2, andg=−0.54, the system is
in the chaotic state. Figure 9 shows the chaotic attractor in
two-dimensional phase space. Figures 10(a) and 10(b) dis-
play a time seriessstd=ystd and the reconstructed attractor
whent=1.5 calculated by using the autocorrelation function.
The sampling rate is 0.04.

By comparing Fig. 10(b) with Fig. 9, it is seen that the
reconstructed attractor is not like the original and seems
quite entangled. In fact, it is very difficult to find at which
results in plausible reconstruction of this attractor. We will
give a possible explanation for this behavior using the con-
cept of forecast entropy.

FIG. 7. (a) A piece of time se-
ries ystd from the Rössler system.
(b) The reconstructed attractor
from the series when delayt
=1.45 determined by the autocor-
relation function.

FIG. 8. F vs t of the Rössler system(32) whend=2,3,4, and 5,
respectively.(a) n=2d+2. Following results are observed.(i) The
minimumF=0.0052 appears ind=3 att=1.0 andF3 changes very
slowly whent is between 1.0 and 2.0.(ii ) d=3 is the most suitable
dimension for predictions.(iii ) The minimumF is smaller than that
of the Lorenz system(31), which indicates that the Lorenz system is
more complicated than the Rössler system from the predictability
viewpoint. (b) n=16. F2.F3, and F3, F4, and F5 are almost the
same. Thusd=3 is the dynamical dimension of the Rössler system.
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Case 1. n=2d+2. F in this case is shown in Fig. 11(a).
From the figure, the following is observed:(i) The minimum
F,0.07 appears ford=2 ast→0. (ii ) d=3 is the most suit-
able dimension to do predictions ift.0.15. (iii ) The mini-
mum of F3 is 0.11 whent=0.32. The minimum is much
larger than those of the Lorenz and Rössler systems. There-
fore, it is much more difficult to do predictions. The result
agrees with what we obtained in Ref.[24]. (iv) Unlike the
Lorenz and Rössler systems, hereF2 does not arrive at its
minimum monotonically ast increases from 0.

Case 2. n=16. F in this case is shown in Fig. 11(b). Ob-
viously, F2.F3.F4, while F4,F5, and F6 are almost the
same.d=4 is the dynamical dimension of the system.

D. Another four-dimensional chaotic system

The system is described by[25]

ẍ = − sa + y2dx + y,

ÿ = − sb + x2dy + x. s33d

When a=0.1,b=0.101 and initial condition
(xs0d , ẋ0s0d ,ys0d , ẏ0s0d)=s0.1,0.1,−0.1,−0.1d, the four-
dimensional system is highly chaotic. The attractor is shown
in Fig. 12. It is observed that the local structure of the attrac-
tor is more tangled than those of the Lorenz and Rössler
attractors.

Figures 13(a) and 13(b) display a time seriessstd=xstd
and the reconstructed attractor whent=6.0. The result from
the autocorrelation function ist=150.0, which is bad from
the viewpoint of reconstructing an attractor. In fact, there is
no reasonablet to reconstruct an attractor like the original.
We have usedt=6.0 just because the reconstructed attractor
is a little like the original. The sampling rate is 0.1.

Case 1. n=2d+2. F in this case is shown in Fig. 14(a).
From the figure, the following is seen:(i) The minimum
F,0.08 appears atd=2 ast→0. (ii ) A three-dimensional
(3D) attractor is enough for optimal predictions.(iii ) The

FIG. 9. Some phase portraits
of the chaotic attractor of system
(32).

FIG. 10. (a) A piece of time
seriesystd from system(32). (b)
The reconstructed attractor from
the series when delayt=1.5.
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minimum value ofF3,0.1 whent→0. (iv) F3 of this sys-
tem is much larger than the corresponding forecast entropy
sF3d of the other systems studied above. Therefore, it is very
difficult to do predictions based on the reconstructed attrac-
tor. (v) Another distinctive aspect ofF of this system in
terms of the Lorenz and Rössler systems studied above is
that, like F2 of the former 4D system, the minimal value of
Fd exists ast→0. This characteristic, as we will see in the
next section, is similar to that of a pseudorandom system. It
may indicate that it is difficult to reconstruct an attractor
similar to the original based on the time series from system
(33).

Case 2. n=16. F in this case is shown in Fig. 13(b).
Obviously,F2.F3.F4, while F4,F5, andF6 are almost the
same.d=4 is the dynamical dimension of the system.

From the above examples, we may conclude that our fore-
cast entropy technique is a convincing measure of the diffi-
culty of prediction based on an observed time series. The
technique may also capture some important information such
as the dynamical dimension of the system producing the time
series when the system is deterministically chaotic. In the

next section, we shall investigate a pseudorandom number
generator and a noised time series from the Lorenz system.

VII. F OF NONDETERMINISTIC SEQUENCES

A system-supplied functionsrands·d is almost always a
linear congruential generator, which generates a series of
integers I j each between 0 andm−1 by the recurrence rela-
tion [26]

I j+1 = aIj + csmod md. s34d

Herem is called the modulus, which determines the maximal
length of the pseudorandom number sequence.a and c are
positive integers called the multiplier and increment, respec-
tively. A “minimal standard” generator proposed by Park and
Miller [27] is based on the following choices:

a = 75 = 16807, m= 231 − 1 = 2147483647, c = 0.

s35d

In our calculation, we use the series of the pseudorandom
numbers distributed inf0,1g, which is then given bysj

= I j /m.
We investigate the second case, where the characteristics

of the local structure of the reconstructed attractors are con-
sidered(if we still call themattractors) with the same num-
ber of neighbors. Let us taken=16, N=1024, and the sam-
pling rate of one unit—i.e., sampling the output from the
generator continuously.F in this case is shown in Fig. 15(a).
The figure shows that(i) F monotonically increases withd
whend=2, 3, 4, 5 and(ii ) F increases witht until t=3 units
and remains unchanged whent increases further. The shape
of F in the pseudorandom case is clearly different from that
of the deterministic chaotic cases.

From the forecast entropy point of view, the pseudoran-
dom system is not “ideal.” The distribution ofsj in regular
space is quite uniform, but not in tangent space, as displayed
in Fig. 16 wheresj8=sj+1−sj for any integerj .

To investigate a higher-dimensional reconstructed attrac-
tor, we calculate theF at t=30 units andd=2,3, . . . ,30. The
result is shown in Fig. 15(b). It is found thatF monotonically
increases withd maybe to its limit 1 asd→`. Of course,F
cannot keep increasing for any linear congruential generator
with a modulusm when dùm. In fact, F would decrease
rapidly because the periodic sequence with maximal length
m cannot fill up anm-dimensional space[26].

A practical observed time series may be contaminated by
noise. To show the ability of forecast entropy to capture in-

FIG. 11. F vs t of system(32). (a) n=2d+2, (b) n=16.

FIG. 12. Phase portraits of the
chaotic attractor of system(33).
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formation in a contaminated series, we use the seriessstjd
=xstjd+sj, where xstjd is the time series from the Lorenz
system andsj the random series studied above. The signal
noise rate(SNR) is about 30.

Whenn=16,F is displayed in Fig. 17. It is seen that when
t,0.03 (or 3 units in the pseudorandom generator), similar
to the pseudorandom case,F increases ast does; however,
when tù0.03, the shape ofF is very similar to that of the
noncontaminated time series from the Lorenz system except
F is much larger now, and still one can determine the dy-
namical dimensionsd=3d of the deterministically chaotic
system from the noisy series.

VIII. CONCLUSION AND DISCUSSION

We have proposed aforecast entropywhich measures the
difficulty of predicting an observed time series. Unlike exist-

ing entropy-based measures, which depend only on the dis-
tribution in regular space, forecast entropy is based on the
distributions of the time series in difference spaces up to
some maximum order. In this paper, we have focused on the
distribution in both regular and tangent spaces.

To measure the distribution in tangent space, our proce-
dure considers the distribution from the coarsest to the finest
resolutions. We have shown several examples involving sys-
tems of various dimensionality and ranging from determin-
istic to pseudorandom. We may conclude that our procedure
can determine the difficulty of prediction. This is equivalent
to determining the complexity of the local structure of the
reconstructed attractor.

Further, forecast entropy can also capture some important
information such as good values of the delay, the embedding

FIG. 13. (a) A piece of time series ofxstd of system(33). (b) The reconstructed attractor from the time series when delayt=6.0.

FIG. 14. F vs t of system(33), when d=2,3,4,5, and 6, re-
spectively.(a) n=2d+2, (b) n=16.

FIG. 15. (a)F vs t of system(34) when n=16. (b) F vs d of
system(34) whent=30 units andn=16.
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dimension for optimal prediction, and especially the dynami-
cal dimension of the system generating the observed time
series. Finally, the forecast entropy procedure may be useful
to distinguish whether an observed time series is random or
chaotic. In our examples, the forecast entropy of a determin-

istically chaotic time series was clearly different from that of
a random sequence. However, it should be noted that the
distinction between deterministic chaotic systems and ran-
dom systems might not be so obvious. Recent work in er-
godic theory suggests that one may put these systems in one
frame [28]. Philosophically, with proper measurement, a
completely random series could yield a deterministic pro-
cess.

When the series is from a high-dimensional system, our
procedure is unable to determine the dynamical dimension.
This is reasonable: one cannot infer everything that happens
in the whole world based on observing the motion of an ant.
But if we have more than one series of data generated from
the system, we may obtain more information by calculating
the forecast entropy.
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