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Measure of predictability
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Many techniques have been developed to measure the difficulty of forecasting data from an observed time
series. This paper introduces a measure which we call the “forecast entropy” designed to measure the predict-
ability of a time series. We use attractors reconstructed from the time series and the distributions in the regular
and tangent spaces of the data which comprise the attractor. We then consider these distributions on different
scales. We present a formula for calculating the forecast entropy. To provide a standard of predictability, we
define an idealized random system whose forecast entropy will be maximal; we then use this measure to rescale
the forecast entropy to lie in the ranf®1]. The time series obtained from several chaotic systems as well as
from a pseudorandom system are studied using this measure. We present evidence that the forecast entropy can
be used as a tool for determining optimal delays and embedding dimensions used for reconstructing better
attractors. We also show that the forecast entropy of a random system has completely different characteristics
from that of a deterministic one.
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[. INTRODUCTION relation of the Lorenz system is much longer than that of the
Rossler system. So the Lyapunov exponent and the autocor-

_In the study of a complicated physical system, data analyzg|ation function approaches seem to contradict one another
sis of the time series of some physical quantities of the sysy, this context.

tem is necessary in order to obtain the most important prop- 5 fractal-dimension-like correlation dimensidi6] (d,)

erties of the system. One of the fundamental problems in thﬁway also indicate something about system complexity be-
study is how to measure the complexity of both local and

lobal d ical behaviors f the ob q 1 . _-cause it represents the density of the system’s orbits in phase
?_r? a yn?mlca behaviors hromt €o ts_er_ve thlme Serl'esspace. For a system in a stable equilibriuda=0, in a stable
ere are two main approaches to quantifying the comp eXf)eriodic state,d.=1, and in a chaotic stated.>2. It seems

ity of a distribution[1]. Ope approach has roots in dynamicalt at the larger thed, , the more complex the system. How-
systems theo_ry .and includes Lyapunov exponents an ver, to determine which of the two systems with=2.1
KoImogor:ov—Smalde_ntrlo%)[Z]. SThhe other stems frodm |Infor- and 2.3, respectively, is more complex requires more infor-
mﬁ“o_” t eor?/ an 4|ncFu €s _annofn hentrcﬁBy ?n_ al90-  mation about the systems. However, the more information
rithmic comt?]exny[k].fng rfv'leV\éOFt € chomE eX|tytmea- one has, the harder it may be to make a judgment. This
SUres, see the work o Ine a_.[ ]. For chaotic systems, suggests thahe complexity problem is itself complex
various approaches to complexity measurements may be mu- In this paper, we propose an alternative approach to mea-
tﬁallly compll_ementary or may be ?ontrr]adlqtory. For exarnplesuring the predictability of the time series by considering the
the largest Lyapunov e_xpone(.m) orac aqtlc attractor mea- icribution of an observed time series in both the regular
sures how fast two neighboring orbits diverge from one an-

) . : _and tangent spaces. We introduce the idef@@fcast entropy
other. Thus)\ describes how fast information about an orbit (F) to measure the predictability.

is lost. It seems reasonable to conclude that the largex the We introduce what we will call an “ideal random system”

the more complex the system. On the other hand, the aulQg act as the unpredictability standard. The maximum value

correlation function of a time series gives the correlatlo_nOf F is normalized to 1. At this maximum value, the system

- - ; "5 totally unpredictable, having the maximum number of pos-
formation of the next point can be obtained from the currentipia states not only in regular space but also in tangent

point. Therefore_, it seems reasonable to say that the shortgbaces of any order. For any completely predictable system,
the autocorrelation, the more complex the system. Howeveguch as periodic systemE=0. For a real system or an at-
for the well-known chaotic Lorenz and Rdssler systems, th?ractorF lies in the interva'[o '1]

largest Lyapunov exponent of the Lorenz system can be In Sec. Il, our predictability problem will be framed. A

much larger than that of the Rdssler system, but the auwcoE’ommonly used procedure for measuring complexity will be

analyzed to show its disadvantage in solving this predictabil-

ity problem. To describe our procedure, an ideal random sys-
*Present address: Department of Mathematics and Statistics, Yotem will be introduced in Sec. Ill. A mathematical expression
University, 4700 Keele St., Toronto, Ontario, Canada M3J 1P3for F will be given in Sec. IV. Some simple cases of the

Electronic address: wgyao@mathstat.yorku.ca predictability problem are enumerated in Sec. V to illustrate
"Electronic address: essex@uwo.ca our approach. In Sec. VI we turn to some real chaotic sys-
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the time series, such as the dynamical dimension of the sys- ll. IDEAL RANDOM SYSTEM
tem. A pseudorandom system and the noised Lorenz system
will be investigated in Sec. VII. Finally, discussion and con-
clusions are given in Sec. VIII.

Suppose there is a one-dimensional infinite time series
{x(t;))} generated by a system, whdrei At, i=1,2,... and
At is a constant. Denote th¢h difference of{x(t;)} by

II. PREDICTABILITY PROBLEM D)} = DX () - XV () VAL,
Here,{x9(t)}={x(t)}. The system is called a@deal random
systemif and only if for all j=0,1,..., theseries{x/(t,)} is
uniformly distributed in the regimd[a’’,b"]}. In other
Yords,xV(t) can be any value iffa?,b?]} in equal prob-
ability. Here,a”’ andb) are the smallest and largest values

Our predictability problem is the following: Given a se-
ries of data, how difficult it is to predict the next point?
Different techniques may be used for predictions. Frequentl
used techniques include neural netwofk$, wavelets[8],
return mapg9], and nonlinear dynamical forecastifgo]. £ it
The performance of these techniques may differ dependin8 {x (')}:' . . . L
upon the given data. The task of studying the predictability qu a finite Series W'th equal time mterva}ls, one may only
problem is to show the general difficulty of predictions. c_onsm_ier the dIStI‘IbUtI.OHS up to some maximum order of .f"

The predictability problem is often investigated by mea-Nite differences. In this paper, we limit ourselves to consid-

suring the spatial complexity of the data. One begins by cal€ring the distribution of zeroth- and first-degree differences.
culating the probability of finding a point in a specific neigh- The zeroth-degree difference corresponds to the usual space

. y - : RY, whered is the embedding dimension used in reconstruct-
ﬁ?;l?gﬁhgﬁggg?%ﬁgo Irrgzs/ gre?ﬁ]aébgll?ﬁp?ifsfé?glnnc%gr]]e point in_g the attractor from the time seri¢g(t;)}. The first-degree
difference corresponds to the tangent spacRbf

We will use this as the standard of unpredictability and to
normalizeF of real observed time series. Of course, such an
ideal random system cannot exist—it is impossible{fdt;)}
which tells how much information is obtained by receiving tg pe iid (independent and identically distribuednd uni-
pi- The Boltzmann-Gibbs-Shannon entropy, here denoted bjsrm and for the differences to also be iid and uniform. But
C, is just the expected value of thssirpriseover all states  no other system will have as big a forecast entropy as this

hypothetical system, so it obtains a normalization constant.

n In the following, we only consider the zeroth-degree situ-

C=-2p Inp. (2 ation, since gth-degree case can follow the same procedure
i=1 based on the distribution dkU(t;)}.

surprise= - In pj, (1)

The prol_alem Wit_h this technique i_s that it does not consi(_JIer IV. CALCULATION OF FORECAST ENTROPY
the spatial location op; at all. For instance, suppose that in
four sequential positions 1, 2, 3, and 4, there are two prob- As we discussed in Sec. I, a more meticulous version of

ability distributions, given below: the predictability problem should consider the spatial organi-
space positionl 2 3 4, zation of the probabilities. The method based on®ydoes
distribution I: {0.4, 0.4, 0.1, 0.1, not do this. One way of incorporating spatial information is
distribution 1I: {0.4, 0.1, 0.4, 0.1 to separate the group into subgroups or observe the distribu-

Application of Eg.(2) to the two distributions yields the tion in different scales. For example, for distributi@n, if
same answer, despite the very different spatial structure offe decompose the distribution into two subgrogps, p,}
the two probabilities, which could result in a large discrep-and{ps, p4}, the difference of the probabilities between these
ancy in forecasting to which nearby positioh, 2, 3, or 4  two subgroups appears, indicating spatial information. A
we will step next. For distributior{l), one certainly will more rigorous analysis of this basic idea leads to our ap-
judge that the next data may be locateztweerpositions 1  proach described below.
and 2, while for distribution(ll), one may say that the data
may be located near position 1 or near position 3. Further,
the resulting errors from the judgments may be different.
Statistically, the error in the former distribution is less than ~Suppose there is a segment of the one-dimensional time
that in the latter. Therefore, the complexity of these two dis-Series{x(t)}, i=1,2, ... n. A probability distribution can be
tributions should be different. obtained based on the values of these data points. For sim-

In the above, we have proposed our predictability prob-Jlicity and without loss of generality, suppose=2" (see
lem and analyzed an often-used complexity measure technore discussion latgrwheremis a positive integer. If the
nique. This technique could not be safely used in the predicttime series is generated by the ideal random system, the dis-
ability problem because it does not consider the spatialfibution is uniform inxe[a,b], wherea and b are the
structure of the probabilities. Our procedure is designed teémallest and largest values fi(t)}. Equally partition the
overcome this. Before describing our procedure, we first ininterval[a,b] into n subintervals so that for the time series
troduce an ideal random system which plays an essential rofeom the ideal random system we expect a single point in
in our procedure. each of the subintervals as shown in Fig. 1. If the time series

A. F in the one-dimensional caséd=1)
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( N ( \ F:EakSK, (6)
k=1

V V
n/2 n/2 whereq,,k=1, ... m, are parameters dependent only on the
number of points,n. Therefore,F is the summation of

weightedSs up to themth level. For the ideal random sys-
FIG. 1. Distribution of a one-dimensional ideal random €M, F=Figea, given by

system.
m
o k-1
is not from the ideal random system, the distribution will not Figea = I Zgl 42" (7)

be uniform. Thus, we may expect many points in one sub-
interval and none in other subintervals. We describe the pro- To determine the parametedg's, we consider two distri-
cedure as follows. butions with the same number of points; 2™(m=2). One
Step 1 Cut the line at the center ¢f,b], and count the is generated by the ideal random system, with khef that
number of points on the left and right half lines, respectively;distribution calculated by Eq7). Suppose another system
then, denote the numbers by and ng, respectively. The Wwith the same number of pointsp, has the pattern
location (left or right half of the ling of the next point may {2,0,2,0,...,2,Ppvhere the digi{0 or 2) means the number
be predicted based on the fractiong =n,/(n_+ng) and  of points in the position. This distribution is special because
pr=Ng/(n_+ng), respectively, which we interpret as prob- the difference between the ideal distribution and this case
abilities stemming from some process. At this scale, the difappears only at the last step in the decision tree, and it
ficulty of prediction may be measured by the Boltzmann-doubles the probabilities of the ideal case. We use a factor of
Gibbs-Shannon entropy 2 because we are working with powers of 2. The expression
for the F of this distribution,F’, is the same as EqY7),
except thatS,,=0:

Si=-pLInp.-prIn pg. (3
m-1
Here, the subscript 1 of indicates the first level. For the F'=In2Y, o2t (8)
ideal random systemm =ng=n/2. Therefore,p, =pg=1/2 k=1
and thenS;=In 2.

Step 2 Again cut the left and right half lines at their F' Shows a special property, in which one term is lost com-
centers, and count the number of points on the new interval$ared with Eq(7). As indicated, to arrive at a specific point

as shown in Fig. 1. Denote the resulting numbersigyn s, 1N the first distribution, the fraction ipigea=1/n, while in
the second distributioy’ =2/n. The difficulty of the predic-
NrL, andngr

To predict whether the next point will be located in the tion for the first distribution is 2 times that of the second one.
regime LL or LR, one may use the fractions, interpreting One should expect this to be reflected in that, of the first
them as conditional probabilitiegy, =n, /(n +ng and distribution is also double the second one:
p.r=nr/ (N *+Nn.R). The difficulty of the prediction can

again be measured by Figea= 2F'. 9)
From Eqgs.(7)—9),
S ==p InpL—PrIN PR
m-1
Similarly, in the regime includingRL andRR the probabili- Um= S k21 a2 (10)

ties arepg =ng./(Ng tNrr) and prr=Ngr/ (g +NgR), re-
spectively. The Boltzmann-Gibbs-Shannon entropy in this Thus we have obtained the relation of, to
regime is ag,as, ... ,am-1. Similarly, we can find the relation af; to
aq,q;, ... a1, Wherei=m, by considering two distribu-
tions with the same number of points=2™, m=2. One is
the same as that of the ideal random system aitthievel—
namely,  {2m 2mi 2™ The other is
For the ideal random systerp,; =p r=pr.=Prr=1/2 and  {om-i*1 g pmwi+l g 2+l Ol For the former distribu-
§ =5%=In 2. We now add to ge§,, the total Boltzmann- tjon, F=F;:
Gibbs-Shannon entropy of level ;=5 +S=2In 2.

Step 3 Repeat the process on the shorter and shorter in- [
tervals to themth level. For the ideal random system, we Fr=In 22 o2kt (12)

SR=-PrL N prL= PrrIN Prr: (5

expect only one datum in each of the subgroups. Obviously, k=1
at thekth level, the totalS.=2%"! In 2(k<m).
DefineF as For the latter distributionfF=F:

066121-3



YAO et al.

i-1

Fy=In 2> a2t (12)
k=1

Becausd~,=2F,, from Eqgs.(11) and(12), one has
10t
;= 2'_1k21 o 2¢L (13)
Wheni=2, it follows from Eq.(13) that
ay= ayl2. (14
Wheni=3, using Eqs(13) and(14), one obtainsy;=a4/2.

Repeating the process to deduce all the parameters, finally

one has

a=aoqf2, k=2,...m. (15)

PHYSICAL REVIEW E 69, 066121(2004)

If n=3", we may cut the lindinterval) into three equal
intervals each time. Suppose the probabilities of finding a
point in the three intervals arp;, p,, and p;. Then S=
—Eﬁzlpk In p.. For the ideal random system,=1/3, andS
=In 3. Similarly, up to thamth level, using a similar process
to the casen=2", we obtain

m 2 m
F:EaksK:al(SﬁgEsK). (21)
k=1 k=2

For the ideal random system,
Figea= @13™ 1 1n 3. (22

Taking a;=(3™1n 3)7! results inF;g,=1 for the ideal ran-
dom system. Substituting, into Eq. (21) gives the formula
for calculatingF for any distribution.

One may use other distributions with the same number of The above procedure can be generalized to the nase
points to obtain the relation of the parameters. For examples|™, wherel is the smallest positive integer that satisfies
one distribution is{2™",2™,...,2"™"} and the other is =pm" for any possible positive integen. For example, if
{2m"*2,0,0,0,27*,0,0,0,...,27*1,0,0,0. In this case, n=16=2*=42, | should be taken as 2, not 4. In this general
for the latter distributionF=Fj3: case, for the ideal random system,

i-2

— m-1
F3: In 22 akzk—l (16) Fldeal ag I Int. (23)
k=1 Taking a;=1/(I™* In 1) yields Figes=1 for the ideal random
and system. For any distribution with=I™, we have
Fi=4F;. (17) i 1 - 1e
| o F=X aS=mm—|S+— 2 %) (29
We then lose two terms in the expansid®) with respect to k=1 I™in | I =2

Eq. (12). Finally, we will have two free parametei$n prac- . _ .

tice, only one is free because the other will be determined b%oeofftijc\:/ig#ts(m r\:\)/t]le r;r; ;’ Foroe ddlrjr:;:asstlfelgf\?\@(zga?/);cggtg din

normalization) The uniqueness of the solution requires the L. Theref ' h 9 h thaim t be 1 if

a’s to be independent of the distribution chosen. The values€C- I Therefore, when is such tham mus ,e. itone
For the ideal random system, substituting the parameterdheren’>n andm’>1. Then thes@ points are distributed

in Eq. (15) into Eq.(7) yields on the line by a scale’/n. Finally, F can be calculated

according to the distribution.
m

1
Figeal= a1ln 2<1 + Egzzk) =a,2"n 2. (18) B. F in the multiple-dimensional case(d=2)
For simplicity, we may first calculatEé of the ideal ran-

dom system along each coordinaigee more discussion
later), then define the systemis to be the average of these

1 forecast entropies. For example, for the ideal random system,
= >Mn 2 (19 the distribution is uniform along each coordinate, and then

the forecast entropy is 1 on the distribution, which results in

the average of the forecast entropies being 1.

If we defineFgeq=1 for the ideal random system, we then
obtain

For any distribution with the number of pointe=2"=4,
from Eqg. (6), we have
C. F of a system up to thejth difference

F DenoteF; as the forecast entropy of the system atithe

m
(281 2 SK) (20)
k=2 difference, where [0,j]; then, theF of the system up to

F <[0,1] because a distribution under consideration is alth€ith difference is defined as
ways in comparison with the distribution of the ideal random i
system which hathe same number of pointEhe magnitude F= LE = (25)
of F is thus normalized in terms of something that is un- ' '
bounded. Hence, this does not mean that absolute entropy is
bounded. For the ideal random systerfi=1 becausé~;=1 for all i.

= omin o
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- (a) o (b) (a) (b)
0/:/" i e o o
I I e o ol olel e
./ 0 % 180 20 360 N 0 % 180 20 360
X degree X degree
FIG. 2. Distribution of four balls on a plane in case 1. FIG. 3. Distribution of four uniformly distributed balls on a

plane.

V. SOME BASIC CASES

. . (1), the forecast entropy of the ideal random system of the
In some forecasting techniques such as Short's “nonlineayjistripution is

dynamical forecasting]10], the prediction is based on the
local manifold centered at the predicting point in regular Fidea= 4a; In 2. (26)
space. The manifold can be determined by the first-degree
differences of the points. The difficulty of predicting the Letting Figea=1, one has
value of the next point depends on the distribution of the 1
points in the first-degree difference space—i.e., the tangent = .
space. In the cracking technique proposed by Pérez and Cer- 41n2
deira[9], however, the difficulty relies on the distribution of
points in regular space only. The first-degree differences of .
the points are zero.

Next, we investigaté for some basic cases. For simplic-
ity we consider a local region where there are only four

(27)

From this case, we may answer the question: Why do we
ed to consider the distribution in tangent space? Not only
can a random distribution in range of regular space be quite
uncomplicated in the tangent space, it is the tangent direc-
. . . tions that hamper forecasting events most when one has a
plomf[s on a plane. As dlscussgd al_:)ove, tp obgiof .the' cloud of data, but no idea which one to go to next. One can
Q|str|but|on on a plane, one ml_ght first project th_e d_'sm_bu'use such prediction techniques as nonlinear dynamical fore-
tion onto two rectangular coordinates to get two distributionSggting 1o forecast the next data without difficulty. Therefore,
on th_e two lines, respectw_ely, then calculéts of the dis- a careful measure of the predictability needs to consider this
tributions separately, and finally averags as the expected dynamical aspect of signal data.

F of the planar distribution. Case 2 Suppose the four points are not uniformly distrib-

If one considers instead the distribution in tangent space,.q [Fig. 4@)]. The angular distribution is shown in Fig.
one may use the distribution of tlaglesspanned between 4(b). Based on the distribution, we have

the tangent directions of the points in regular space in terms
of some reference directiofsuch as the axis), instead of 11 33\ 11 2 2
the tangents themselves. The angles are then mapped onto anF =~ a1 2{ 7In7 +-In ] + 2Inz + 2inz 1 =0.6352,
interval scaled between 0° and 360°. The scale is determined
by the number of points. If there are points, the line is (28)
scaled ton equal intervalgso that for the ideal random case,
. o . where Eq.(27) has been used.
there is one point in each interval on averaddter that, one . S o
. L ; Case 3 Consider the distribution of one point in case 2. If
has to adjust the direction of the coordinates on the plane sQ . . :
L N R I were changed slighthyfsee Fig. 4a)] according to the
that most angles are distributed between 0° and 180°. After, . VTS .
: ) ; . dashed line, thé& of the distribution would still be 0.6352.
the adjustment, the coordinate on a plane is unique. Ong . o )
. e -But it makes sense th&t in this case ought to be different
need not consider the angular distribution of other coordi, . :
nates from that in case 2. Clearly, to treat this we need to deter-

Case 1 Suppose the four points move with the same vemine F using higher-degree difference spaces, in order to

locity and in the same direction as depicted in Figa)2 obtain sufficient differences in the distributions.
. . ) : ) We have studied three kinds of distributions. Any other
Obviously, if one predicts;,; from x, based on this mani-

: . .. distributions can be studied similarly. In a real chaotic attrac-
fold, .., can be obtained without error, as the dashed line Mor, the case often encountered is that the number of points
Fig. 2(@) shows.F is calculated based on the distribution of ' S . po

) changes in different local regions. One may have to partition
the angles spanned between these directiantually, only s - :
Lo OE - . . the space in different ways. In some prediction techniques
one direction in this cagend thex coordinate, as shown in the points are used to construct a map. The number of points
Fig. 2(b). All the angles have the same value. We then have P P- P

F=a;(-1In1-01In Q=0, where «; is a constant deter-

mined by calculating= of an ideal random system with the (a)
same number of points. We have taken 01In0=0 \. .J’

X (limy_ox In x=0) in calculatingF in this case.

The average distribution of four points from an ideal ran- /. o @ 1 ® J ®
dom system is shown in Fig.(&. The arrows indicate the
directions in which the points move. The distribution of the
angles mapped onto a line is shown in Figh)3 From Eq. FIG. 4. Distribution of four balls on a plane in case 2.

(b)

0 90 130 270 360
X degree
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is determined by the number of unknown parameters in théce, it is enough to consider a smaller number of planes to
map. If the number of parameters is 25, at least 25 neighbowbtain F. Whend<NAt/r, where At is the sampling rate,

ing points are needed. In this case, we may search the neigthe phase diagram projected from the reconstructed attractor
boring points centered on the reference point in regular spacen the(x;, x;,1) plane is the same as that on {lxg,x,) plane,

to obtain 2 such points(Of course, one may also choose wherei=2,3,...,d-1. Including the plane itself, there are in

=5 andm=2 for the 25-point casg. totald—1 similar diagrams as on th&;,x,) plane. Similarly,
there ared—i diagrams similar taxy,X.1) plane including
VI. F OF SOME CHAOTIC SYSTEMS the plane itself, wheré=1,2,...,d-1. Denoting byF' the

forecast entropy of the distribution on the , x,,,) plane, we
obtain the forecast entropy of tliedimensional attractor by
averaging the entropies of the distributions on each plane:

d-1

Consider a time seriegt) coming from a chaotic system.
When the forecast entrogdy is based on the attractor recon-
structed froms(t), three factors may affect the measure.

The first factor is the value of the delay An improper o
value of 7 will cause the reconstructed attractor to be more Fq= dd- 1)2 (d-DF. (29)
tangled than it needs to be. =1

Second, the dimension will affect the local structure and To Ca|cu|ateFi, we first findn nearest neighbors of point

therefore affect the set of the neighbors, wiiles calculated  j in regular space, then calculate forecast entropy of the local
by averaging the locaF’s in local regions. For example, djstribution of these neighbors in tangent space—that is, ac-
when the attractor is reconstructed to be two dimenSionabording to their ang]es as discussed in Sec. V. Let pp|nt
the coordinate of theth point on the plane is(t),s(ti  experience each point of the time series. The average of
+7)). Whether thejth point is a neighbor of théth point in  these locaF’s is taken ag=' of the distribution in the plane.
regular space is determined by the distance—e.g., To choosen, the number of neighbors, we consider two
VIs(t) —s(tj) 2+[s(ti+7) —s(tj+7)]2. If one chooses three di- cases. First, we choose 292 whered is the dimension. We
mensions, the coordinate of thigh point is (s(t;),s(t; want to investigate for which value af F reaches its lower
+7)s(tj+27)), and the distance between pointsand j is bound so that one can usedadimensional reconstructed
changed. attractor for optimal prediction. Second=16. We investi-
Third, the size of the neighborhood or the number ofgate the complexity of local structures of the attractor.
neighbors has an effect. Obviously, if the size>0 or there
is no neighbor of the reference point, tHer 0. On the other
hand, if e— o or all the points in the attractor are neighbors A. Chaotic Lorenz system
of the predicting point, their may be quite close to 1 be-  The chaotic Lorenz system considered here was first in-
cause there may be a large number of tangent directions. troduced in[11] and is
Clearly, to compard-s of different time series—i.e., of

different chaotic attractors—the number of points in each x=10y - X),
series must be the same. Further, one needs to consider the
number of orbits consisting & points. Every system has its y=25Xx-y-Xz

own natural time scale. When integrating with a single step
size some systems oscillate very quickly, while others oscil-
late slowly. Thus, use of the same sampling rate to obtain the
time series across different systems may cause problems in To obtain an observed time serig$) =x(t) from the sys-
calculatingF. For example, for twdN=1024 time series, the tem, we first use the fourth-order Runge-Kutta method to
Lorenz system oscillates quickly and represents 20 orbitdntegrate it. The step size is 0.01. To reconstruct an attractor
while the Rossler system oscillates slowly and represents justom the time series, one needs a delaywhich may be
3 orbits. The information provided by the first series may bedetermined by calculating the autocorrelation function
enough to describe the dynamical behavior of the system, byiL2,13, mutual information[14,15, and mutual redundancy
that provided by the second one may be insufficient. Theref16].
fore, one has to use different sampling rates for different However, for the Lorenz system, these techniques do not
systems so that the number of orbits consistinyl @oints is  give a satisfactoryr. Instead, one often finds that0.1 is
roughly the same. Of the systems considered in this papebest to reconstruct the attractor, because for this value the
the Lorenz system oscillates the fastest. We use a samplirgtractor looks spread out like the original, projected on the
rate of 0.01 time unit for the Lorenz system and larger rategx,y) plane. The time series(t) is shown in Fig. &3). The
of the other systems. For all time series in this papér, reconstructed attractor whetx0.1 is depicted in Fig. ®).
=214 Is this 7 also best from the viewpoint of predictability?
To calculateF of a multiple-dimensional attractor, we first This question may be answered by calculatfgwhich is
project the attractor to each plane, then calcufatef the  calculated based on the distribution in the tangent space of
distributions on these planes and use the average as the gie series.
tractor’'sF. For example, for al-dimensional attractor with Case 1 The number of neighbors=2%2, In this case, we
coordinates (X1,Xp,....Xg), Wwhere x=xt+(i-1)7], i  focus on the predictability based on the reconstructed attrac-
=1,2,...d, we may consider as manyé?§ planes. In prac- tors with different embedding dimensions. Figur@)6dis-

Z=Xy-2.667z (30

066121-6



MEASURE OF PREDICTABILITY PHYSICAL REVIEW EG69, 066121(2004)

20 20
(a)
10 10
—_ -
Z o Yo
b —
b3
-10 -10
-20 -20
0 10 20 30 40 —-20 -10 (] 10 20

t x(t)
FIG. 5. (a) A piece of time seriex(t) from the Lorenz systenib) The reconstructed attractor from the series when deta.1.

plays F as a function ofr whend=2,3,4, and 5respec- minimum of F5 is 0.022 at7=0.1. Therefore, in order to
tively. Denote F4 as F when the dimension id. The obtain the best forecasting result, one should adjust the value
following information may be obtained from the figuiE7]. of the delay agl changes.

(i) F, oscillates aroundr;, and F3<F,<Fs. This indi- Case 2 The number of neighbors is fixed at 16. We want
cates that a three-dimensional embedding space is enoughtto investigate the characteristics of the local structures of
reconstruct the attractor for prediction purposes. Surprisreconstructed attractors with the same number of neighbors.
ingly, when 7<<0.3, F,<F,. Therefore, it may be better to In this case, as shown in Fig(l§, we may obtain the fol-
do a prediction in a two-dimensional attractor if one uses théowing conclusions.
information of the neighbors in the tangent space. In prac- (i) Except aroundr=0.2, F3<F,, which indicates that
tice, however, one may add some conditions on the choice dhe local structure of the three-dimensional attractor is sim-
neighbors to predict bett¢t0]. In that case, it may be better pler than that of the two-dimensional one.
to use a three-dimensional attractor. As we will see in case 2, (ii) The minimum of F=0.0062 appears at=3 and 7
the local structure of the three-dimensional Lorenz attractor0.1. This indicates that the delay0.1 is the best candi-
is simpler than that of the two-dimensional one. date to reconstruct the attractor when one uses delayed coor-

(i) The minimum ofF, is 0.0082 atr=0.18, and the dinates. Thus, for the time series from the chaotic Lorenz

system,F in tangent space has solved the problem of the
02 " " " " value of delay, while the autocorrelation function in regular
space cannot.

(i) Fy does not decrease further dsincreases after
d>2.

It may indicate that one cannot simplify the local struc-

tures by increasing the dimension of an attractor after2.
In other words, it is enough to use three dimensions to de-
scribe the system. The number of dimensions is exactly equal
to the dynamical dimension of the Lorenz system. This result
is reasonable: A nonlinear coupled system cannot be decou-
pled. The observed time series of any variable contains the
information of the others and the whole system.

Therefore, by calculating of the distribution of an ob-
served time series in tangent space, we have obtga)ete
dynamical dimension of the system that produces the time
series,(b) the value ofr to best reconstruct an attractor, and
(c) the embedding dimension for optimal predictions.

The main purpose of statistics is to capture useful infor-
mation from an observed time serigs8]. When delayed
coordinates are employed to reconstruct an attractor, the
value of the delay and the embedding dimension must be
determined so that the reconstructed attractor shares some
g properties with the original one, such as no correlation be-
0 . : : . tween its coordinates, no crossing of its orbits, and simplicity
of its local structure. Kennel, Brown, and Abarbari&B]
determinedd by studying the “noise” behavior of the neigh-

FIG. 6. F vs 7 of the Lorenz systerni31) whend=2,3,4, and 5, bors about a reference point. They studied an observed finite
respectively(a) n=2%2, (b) n=16. time series from the Lorenz system and found that, in a prop-

0.15¢

0.05r

0.08

0.06

L 0.04

0.02 |4
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FIG. 7. (a) A piece of time se-
ries y(t) from the Rossler system.
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= 0
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-10 relation function.
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erly reconstructed attractor, the “noise” is minimum. Their W=y+z- L, w. (32
work suggested that=4 for the series. Cenys and Pyragas B o B )
[20], however, suggested that=1+[integer part ofd,)] . When @=38.2, 5;=8,=0.2, andy=-0.54, the system is
whered, is the fractal dimension of the attractor. They used'" the_ chao_tlc state. Figure 9 shqws the chaotic attractor in
a similar technique to that of Kennet al. [19], but consid- two-d|m_en3|ona_l phase space. Figuregal@nd 1Qb) dis-
ered the behavior of the neighborhood, not neighbors. For aRl2y & time series(t)=y(t) and the reconstructed attractor
observed time series from the Lorenz system or some oth&yhen 7:1.5 calculafced by using the autocorrelation function.
three-dimensional chaotic system, the result of Cenys andn€ sampling rate is 0.04. o

Pyragag20] is perfect because, e (2,3) for these systems, ~ BY comparing Fig. 1() with Fig. 9, it is seen that the
and we havel=3. But for some higher-dimensional systems regonstructed attractor IS _not I|ke.the ongmal and.seems
the fractal dimension of their chaotic attractors may be stiguite entangled: In fact, it is very dlffICU!t to find awhich .
low—for example,ds < (2,3). In this case, the result of re_sults in pl_au5|ble reconstruction of this attractor. We will
Cenys and Pyragd&0] is unsuitable. There are many other give a possible explanation for this behavior using the con-
arguments in the literature for determining these value&ePt of forecast entropy.

[21,23. Our work suggests that when more information can 0.1 . . Vi
be used from the time series—i.e., the distribution of the — d=2 /
series in tangent space and properly measure this 0o0gf ~— - d=3 @ /
distribution—these values may be well determined.
In the remaining part of this section, we use three other 0.06} \
chaotic systems whose dynamical dimensions are 3 or 4 to
show that the advantages Bfhold not only in the Lorenz 0.04}
system, but in other chaotic systems as well. L
0.02}
B. Chaotic Rossler system
The chaotic Rdssler system, introduced 23], is ]
x=-y-z, 0.05
y=x+0.2y, 0.04}
z=0.2+z (x-5.7). (31 0.03}

The time series(t)=y(t) and the reconstructed attractor are
depicted in Fig. 7.

To calculateF, the series is sampled usingf=0.06 so
that there are approximately the same number of orbits in the
series(N=2%%) as that for the Lorenz system case. The result
is shown in Fig. 8.

0.02} .

0.01}

C. Four-dimensional chaotic system FIG. 8. F vs 7 of the Rossler systeif82) whend=2,3,4, and 5,
respectively.(a) n=2%2, Following results are observed) The

minimum F=0.0052 appears id=3 at7=1.0 andF; changes very
slowly whenr is between 1.0 and 2.0ii) d=3 is the most suitable

A very entangled chaotic system described24] is

X=yrz dimension for predictiongiii ) The minimumF is smaller than that
. of the Lorenz systen®1), which indicates that the Lorenz system is
Y=BLy-Xw+yw, more complicated than the Réssler system from the predictability
viewpoint. (b) n=16. F,>F3, and F3, F,4, andFg are almost the
z=(1-a)x-(1+B)z+xy, same. Thusl=3 is the dynamical dimension of the Réssler system.

066121-8
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FIG. 9. Some phase portraits
of the chaotic attractor of system

(32.

Case 1 n=2%2 F in this case is shown in Fig. {4).
From the figure, the following is observe() The minimum
F<0.07 appears fod=2 ast— 0. (ii) d=3 is the most suit-
able dimension to do predictions 4> 0.15. (iii) The mini-
mum of F5 is 0.11 whenr=0.32. The minimum is much

y=—(B+X°)y+x. (33
When «=0.1,4=0.101 and initial  condition
(x(0),%0(0),y(0),y5(0))=(0.1,0.1,-0.1,-04, the four-

dimensional system is highly chaotic. The attractor is shown

larger than those of the Lorenz and Réssler systems. Therdl F_ig. 12. It is observed that the local structure of the aEtrac-
fore, it is much more difficult to do predictions. The result tor is more tangled than those of the Lorenz and Rossler

agrees with what we obtained in R¢R4]. (iv) Unlike the
Lorenz and Rd&ssler systems, hdtg does not arrive at its
minimum monotonically as increases from 0.

Case 2n=16.F in this case is shown in Fig. {d). Ob-
viously, F,>F3;>F,, while F,,Fs, and Fg are almost the
same.d=4 is the dynamical dimension of the system.

D. Another four-dimensional chaotic system

The system is described K§g5]

X=—(a+y)x+y,

attractors.

Figures 18a) and 13b) display a time series(t)=x(t)
and the reconstructed attractor when6.0. The result from
the autocorrelation function is=150.0, which is bad from
the viewpoint of reconstructing an attractor. In fact, there is
no reasonable to reconstruct an attractor like the original.
We have used=6.0 just because the reconstructed attractor
is a little like the original. The sampling rate is 0.1.

Case 1 n=2%2 F in this case is shown in Fig. 14).
From the figure, the following is seerit) The minimum
F<0.08 appears ai=2 as7— 0. (ii) A three-dimensional
(3D) attractor is enough for optimal prediction@ii) The

FIG. 10. (a) A piece of time
seriesy(t) from system(32). (b)
The reconstructed attractor from
the series when delay=1.5.

7 7
(a)

3} 6

5 5
= =
€4 L4
> =

3 3

2 2

1 1

0 40 80 120 160 0 2
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0.3 ; ; ; next section, we shall investigate a pseudorandom number
(a) - generator and a noised time series from the Lorenz system.
025f — - 1

VIl. F OF NONDETERMINISTIC SEQUENCES

A system-supplied functionsand(-) is almost always a
linear congruential generatgrwhich generates a series of
integers |; each between 0 and—1 by the recurrence rela-
tion [26]

lj+1=al; +c(modm). (34)

0.05

0 0.5 1 15 2 Herem s called the modulus, which determines the maximal
0.14 : . . length of the pseudorandom number sequeacand c are
positive integers called the multiplier and increment, respec-
tively. A “minimal standard” generator proposed by Park and
d=4 i Miller [27] is based on the following choices:

- (b) 4
012} ‘Tt d=3 4

01 a=7°=16807, m=2%-1=2147483647, c=0.
0.08 (35
+ In our calculation, we use the series of the pseudorandom
0.06 o~ g=g numbers distributed if0, 1], which is then given bys;
~¥ -0 U= =l;/m
j/m.
0-040 05 1 15 > We investigate the second case, where the characteristics
| of the local structure of the reconstructed attractors are con-
FIG. 11. F vs r of system(32). (a) n=2%2, (b) n=16. sidered(if we still call themattractory with the same num-

ber of neighbors. Let us take=16, N=1024, and the sam-
minimum value ofF3<<0.1 when7— 0. (iv) F; of this sys-  pling rate of one unit—i.e., sampling the output from the
tem is much larger than the corresponding forecast entropgenerator continuousl¥ in this case is shown in Fig. 1&.
(F3) of the other systems studied above. Therefore, it is veryhe figure shows thati) F monotonically increases witt
difficult to do predictions based on the reconstructed attracwhend=2, 3, 4, 5 andii) F increases withr until 7=3 units
tor. (v) Another distinctive aspect of of this system in and remains unchanged wherncreases further. The shape
terms of the Lorenz and Rdssler systems studied above @& F in the pseudorandom case is clearly different from that
that, like F, of the former 4D system, the minimal value of of the deterministic chaotic cases.
Fq exists asr— 0. This characteristic, as we will see in the  From the forecast entropy point of view, the pseudoran-
next section, is similar to that of a pseudorandom system. ilom system is not “ideal.” The distribution sf in regular
may indicate that it is difficult to reconstruct an attractor space is quite uniform, but not in tangent space, as displayed
similar to the original based on the time series from systenin Fig. 16 Wheresj’=sj+1—sj for any integer;j.
(33). To investigate a higher-dimensional reconstructed attrac-
Case 2 n=16. F in this case is shown in Fig. #9. tor, we calculate th€& at 7=30 units andl=2,3,...,30. The
Obviously,F,>F;>F,, while F,,Fs, andFg are almost the result is shown in Fig. 1®). It is found that~ monotonically
same.d=4 is the dynamical dimension of the system. increases witld maybe to its limit 1 agl—cc. Of courseF
From the above examples, we may conclude that our foresannot keep increasing for any linear congruential generator
cast entropy technique is a convincing measure of the diffiwith a modulusm whend=m. In fact, F would decrease
culty of prediction based on an observed time series. Theapidly because the periodic sequence with maximal length
technigue may also capture some important information such cannot fill up anm-dimensional spacg26].
as the dynamical dimension of the system producing the time A practical observed time series may be contaminated by
series when the system is deterministically chaotic. In thenoise. To show the ability of forecast entropy to capture in-

dx / dt

FIG. 12. Phase portraits of the
chaotic attractor of systeif83).
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FIG. 13. (a) A piece of time series ok(t) of system(33). (b) The reconstructed attractor from the time series when det/0.

formation in a contaminated series, we use the sesigs  ing entropy-based measures, which depend only on the dis-
=x(tj) +s;, wherex(t) is the time series from the Lorenz tribution in regular space, forecast entropy is based on the
system ands; the random series studied above. The signaHistributions of the time series in difference spaces up to

noise rateg(SNR) is about 30. some maximum order. In this paper, we have focused on the
Whenn=16,F is displayed in Fig. 17. It is seen that when distribution in both regular and tangent spaces.
7<0.03(or 3 units in the pseudorandom genergtsimilar To measure the distribution in tangent space, our proce-

to the pseudorandom cade,increases as does; however, dure considers the distribution from the coarsest to the finest
when 7=0.03, the shape df is very similar to that of the resolutions. We have shown several examples involving sys-
noncontaminated time series from the Lorenz system excepems of various dimensionality and ranging from determin-
F is much larger now, and still one can determine the dy-stic to pseudorandom. We may conclude that our procedure
namical dimension(d=3) of the deterministically chaotic can determine the difficulty of prediction. This is equivalent

system from the noisy series. to determining the complexity of the local structure of the
reconstructed attractor.
ViIl. CONCLUSION AND DISCUSSION Further, forecast entropy can also capture some important

We have proposed frecast entropyvhich measures the information such as good values of the delay, the embedding

difficulty of predicting an observed time series. Unlike exist- 0.45
0.5
0.4
oaf — 92 @
o 0.35
0.3 w
w 0.3
0.2
0.25
0.1
0.2
0 0
0 1 2 3 4 T
T
0.55
0.4
++++ d=2 (b)
0.35 d=3 (b) 05
0.3
L 9% w 0.45
0.2
0.15 0.4
0.1
0.35 : .
005 0 10 20 30
d
FIG. 14. F vs 7 of system(33), whend=2,3,4,5, and 6, re- FIG. 15. (@)F vs 7 of system(34) whenn=16. (b) F vs d of
spectively.(a) n=2%2, (b) n=16. system(34) when =30 units anch=16.
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FIG. 17. F vs 7 of the noisy time series from the Lorenz system
whenn=16.

(b)
istically chaotic time series was clearly different from that of
a random sequence. However, it should be noted that the
distinction between deterministic chaotic systems and ran-
dom systems might not be so obvious. Recent work in er-
godic theory suggests that one may put these systems in one
frame [28]. Philosophically, with proper measurement, a
completely random series could yield a deterministic pro-
cess.
When the series is from a high-dimensional system, our
procedure is unable to determine the dynamical dimension.
This is reasonable: one cannot infer everything that happens
FIG. 16. The distributions of the pseudorandom systeriajn  in the whole world based on observing the motion of an ant.
regular space an¢b) tangent space. But if we have more than one series of data generated from
the system, we may obtain more information by calculating
dimension for optimal prediction, and especially the dynami-the forecast entropy.
cal dimension of the system generating the observed time
series. Finally, the forecast entropy procedure may be useful ACKNOWLEDGMENT
to distinguish whether an observed time series is random or This work was supported by the Natural Sciences and
chaotic. In our examples, the forecast entropy of a determinEngineering Research Council of Cangi8ERQ.
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